On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Jean Claude Bajard

joint work with Jérémy Marrez, Thomas Plantard and Pascal Véron

MACAO - Inria - University of Wollongong 2019

Mathematics and Algorithms for Cryptographic Advanced Objects
Outline

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Some Background on Pseudo-Mersenne Numbers

▶ Classical Positional Number System \(\beta \in \mathbb{N} \) and \(\beta \geq 2 \), \(a \in \mathbb{N} \) with \(a < \beta^m \), there exists an unique sequence of integers \((a_i)_{i=0}^{m-1} \), such that,
\[
a = \sum_{i=0}^{m-1} a_i \beta^i, \text{ with } a_i \in \mathbb{N}, \ 0 \leq a_i < \beta.
\]

▶ Specific Modular Reduction
Let \(p \in \mathbb{N} \), \(\beta^{n-1} \leq p < \beta^n \), \(\beta^n \equiv \delta \pmod{p} \), with \(\delta < p \),
do
1. \(a \rightarrow a_0 + \beta^n a_1 \) with \(a_0, a_1 < \beta^n \)
2. \(a \leftarrow a_0 + \delta a_1 \)
until \(a < \beta^n \)
(if \(\delta \leq \beta^{\frac{1}{2}n} \) then two iterations give \(a < 2\beta^n - \beta^{\frac{1}{2}n} - 1 \), if necessary, a last subtraction of \((\beta^n - \delta) \) gives \(a < \beta^n \))
Some Background on Pseudo-Mersenne Numbers

Polynomial approach

Since, $\beta^n - \delta \equiv 0 \pmod{p}$, then β is a root of the polynomial $E(X) = X^n - \Delta(X)$ modulo p,

where $\Delta(\beta) \equiv \delta \pmod{p}$, with $\deg \Delta(X) = d < n$ and $\|\Delta(X)\|_\infty < \beta$.

Reduction modulo p is computed in two steps:

1. **polynomial reduction**: $C(X) = A(X) \mod E(X)$
2. **coefficients reduction**: $C'(\beta) \equiv C(\beta) \pmod{p}$ with $C'(X)$ of degree lower than n and coefficients smaller than β

The **polynomial reduction** looks like:

1. $C(X) \leftarrow A(X)$
2. do $C(X) \leftarrow \Delta(X) \times \sum_{i=n}^{m-1} c_i X^{i-n} + \sum_{i=0}^{n-1} c_i X^i$, until $\deg C(X) \leq n - 1$

Thus, if $\deg C(X) \leq 2n$ and $\deg \Delta(X) \leq n/2$, then $\deg C(X) \leq n - 1$ in two steps.
Some Background on Pseudo-Mersenne Numbers

Polynomial approach

Let t be the smallest integer such that $\|C(X)\|_\infty < \beta^t$.

The **coefficient reduction** could look like:

Do

1. $C(X) \leftarrow \sum_{i=0}^{t-1} C_i(X)\beta^i$, with C_i’s coefficients smaller than β

2. $C(X) \leftarrow \sum_{i=0}^{t-1} C_i(X)X^i$, with $\deg C(X) < t+n$ and $\|C(X)\|_\infty < t\beta$

3. Polynomial reduction of $C(X)$,

Until $t = 1$

This can be seen as a carry propagation.
Some Background on Pseudo-Mersenne Numbers

Lattices approach

The coefficient reduction can be seen as the subtraction of a close vector in the lattice defined by:

\[
A = \begin{pmatrix}
 p & 0 & \ldots & \ldots & 0 & 0 \\
 -\beta & 1 & \ldots & \ldots & 0 & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
 0 & \ldots & -\beta & 1 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
 0 & 0 & \ldots & \ldots & -\beta & 1 \\
\end{pmatrix}
\]

or

\[
A = \begin{pmatrix}
 p & 0 & 0 & \ldots & 0 & 0 \\
 -\beta & 1 & 0 & \ldots & 0 & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
 -\beta^i & \ldots & 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
 -\beta^{n-1} & 0 & \ldots & \ldots & 0 & 1 \\
\end{pmatrix}
\]

The first vector \((p, 0, \ldots, 0, 0)\) represents the modulo \(p\) reduction. Vectors like \((0, \ldots, -\beta, 1, \ldots, 0)\) represent the carry propagation.
Some Background on Pseudo-Mersenne Numbers

Lattices approach

When we consider $\beta^n - \delta \equiv 0 \pmod{p}$, we can replace $(p, 0, \ldots, 0, 0)$ is replaced by $(\delta_0, \delta_1, \ldots, \delta_{n-2}, \delta_{n-1} - \beta)$ thus we obtain a sub-lattice with a reduced base.

$$A' = \begin{pmatrix}
\delta_0 & \delta_1 & \cdots & \cdots & \delta_{n-2} & \delta_{n-1} - \beta \\
-\beta & 1 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & -\beta & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & -\beta & 1
\end{pmatrix}$$
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Polynomial Modular Number System

Definition

A Polynomial Modular Number System (PMNS) is defined by

- a quadruple \((p, n, \gamma, \rho)\) and
- a monic polynomial of degree \(n\), \(E(X) \in \mathbb{Z}[X]\), such that \(E(\gamma) \equiv 0 \pmod{p}\)
- for each integer \(x\) in \(\{0, \ldots, p - 1\}\), there exists \((x_0, \ldots, x_{n-1})\)
 with \(x \equiv \sum_{i=0}^{n-1} x_i \gamma^i \pmod{p}\), \(x_i \in \mathbb{N}, -\rho < x_i < \rho\), and \(0 < \gamma < p\).

Proposition

If \(\mathcal{B} = (p, n, \gamma, \rho)\) is a PMNS, then \(p \leq (2\rho - 1)^n\).
Polynomial Modular Number System

Example: $p = 31$, $n = 4$, $\gamma = 15$, $\gamma^4 \equiv 2 \pmod{p}$, and $\rho = 2$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0, 0, 0, 0)</td>
<td>(1, 0, 0, 0)</td>
<td>(-1, 1, -1, 1)</td>
<td>(-1, -1, -1, 1)</td>
<td>(0, -1, -1, 1)</td>
<td>(1, -1, -1, 1)</td>
</tr>
<tr>
<td>6</td>
<td>(-1, 1, -1, 0)</td>
<td>(-1, -1, -1, 0)</td>
<td>(0, -1, -1, 0)</td>
<td>(1, -1, -1, 0)</td>
<td>(-1, 1, -1, -1)</td>
<td>(-1, -1, -1, -1)</td>
</tr>
<tr>
<td>12</td>
<td>(0, -1, -1, -1)</td>
<td>(1, -1, -1, -1)</td>
<td>(-1, 1, 0, 0)</td>
<td>(-1, -1, 0, 0)</td>
<td>(0, -1, 0, 0)</td>
<td>(1, -1, 0, 0)</td>
</tr>
<tr>
<td>18</td>
<td>(-1, 0, -1, 1)</td>
<td>(-1, -1, 0, -1)</td>
<td>(0, -1, 0, -1)</td>
<td>(1, -1, 0, -1)</td>
<td>(-1, 0, -1, 0)</td>
<td>(-1, -1, 1, 0)</td>
</tr>
<tr>
<td>24</td>
<td>(0, -1, 1, 0)</td>
<td>(1, -1, 1, 0)</td>
<td>(-1, 0, -1, 1)</td>
<td>(0, 0, -1, 1)</td>
<td>(0, 0, 0, 1)</td>
<td>(1, 0, 0, 1)</td>
</tr>
<tr>
<td>30</td>
<td>(-1, 0, 0, 0)</td>
<td>(1, -1, 1, 0)</td>
<td>(1, 0, 0, 0)</td>
<td>(1, 1, 0, 0)</td>
<td>(1, 0, 1, 0)</td>
<td>(1, 0, 1, -1)</td>
</tr>
</tbody>
</table>
Polynomial Modular Number System

Remarks

1. PMNS looks like a positional system, but is not.
\((\gamma^i \mod p) < (\gamma^{i+1} \mod p)\) is not always true anymore.

2. For every quadruple \((p, n, \gamma, \rho)\), there exists a polynomial
\(E(X) \in \mathbb{Z}[X]\) satisfying \(E(\gamma) \equiv 0 \mod p\) and \(\deg E(X) = n\): for example \(E(X) = X^n - (\gamma^n \mod p)\).

3. If \(p < (2\rho - 1)^n\), then the representation is redundant (i.e., some values can have more than one representation).

4. If \(\mathcal{B} = (p, n, \gamma, \rho)_E\) is a PMNS, so is \(\mathcal{B'} = (p, n, \gamma, \rho + 1)_E\).

5. Given \(p, n, \gamma, E\), there exists a minimal \(\rho\) which defines a PMNS \(\mathcal{B} = (p, n, \gamma, \rho)_E\).
The question, for p and n given, Which polynomials $E(X)$

- (i) offer an efficient modular reduction?
- (ii) have a large number of roots γ in $\mathbb{Z}/p\mathbb{Z}$?
- (iii) allow to have ρ as small as possible?
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Existence and bounds of PMNS
PMNS and lattices

We consider the lattice \mathcal{L} over \mathbb{Z}^n of the polynomials of degree at most $n - 1$, for which, γ is a root modulo p.

$$A = \begin{pmatrix} p & 0 & \cdots & \cdots & 0 & 0 \\ -\gamma & 1 & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & -\gamma & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & -\gamma & 1 \end{pmatrix} \text{ or } \begin{pmatrix} p & 0 & 0 & \cdots & 0 & 0 \\ -\gamma & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\gamma^i & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ -\gamma^{n-1} & 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

The fundamental volume of \mathcal{L} is $\det A = p$.
Existence and bounds of PMNS

PMNS and lattices

Theorem
Let \(p \geq 2 \) and \(n \geq 2 \) two integers, \(E(X) \) a polynomial of degree \(n \) in \(\mathbb{Z}[X] \) and \(\gamma \) be a root of \(E(X) \) in \(\mathbb{Z}/p\mathbb{Z} \). Let \(r \) be the covering radius of the lattice \(\mathcal{L} \), if \(\rho > r \), then \(\mathcal{B} = (p, n, \gamma, \rho)_{E} \) is a Polynomial Modular Number System.

Proof.
The covering radius \(r \) of \(\mathcal{L} \) is the smallest number, such that the balls
\[B_{V} = \{ T \in \mathbb{R}^{n}, \| T - V \|_{2} \leq r \} \]
centered on any point \(V \in \mathcal{L} \), cover the space \(\mathbb{R}^{n} \). In other words, for any \(T \in \mathbb{R}^{n} \) there exists \(V \in \mathcal{L} \) such that
\[\| T - V \|_{\infty} \leq \| T - V \|_{2} \leq r. \]
Thus for any \(T \in \mathbb{R}^{n} \) there exists \(V \in \mathcal{L} \), such that
\[T - V \in \mathcal{C}_{O}, \mathcal{C}_{O} = \{ T \in \mathbb{R}^{n}, \| T \|_{\infty} \leq r \}. \]
Existence and bounds of PMNS
Lattice’s bases and PMNS

Theorem
Let $B = \{B_0, \ldots, B_{n-1}\}$ a base of \mathcal{L}, and B the matrix associated such that, B_i represents the i^{th} row., with $B_i = (b_{i,0}, \ldots, b_{i,n-1})$, thus $b_{i,j}$ represents the coefficient of the i^{th} row, j^{th} column.

If $\rho > \frac{1}{2} \|B\|_1$, ($\|B\|_1 = \max_j \left\{ \sum_{i=0}^{n-1} |b_{i,j}| \right\}$), then $\mathcal{B} = (p, n, \gamma, \rho) E$ is a Polynomial Modular Number System.

Proof.
Let $S \in \mathbb{R}^n$, we search a close vector $T \in \mathcal{L}$ using a Babaï round-off approach. We have, $T = B^T.(B^T)^{-1}.S$.

$S = B^T.(B^T)^{-1}.S = T + B^T.\frac{(B^T)^{-1}.S}{(B^T)^{-1}.S}$ with $\| \frac{(B^T)^{-1}.S}{(B^T)^{-1}.S} \|_\infty \leq \frac{1}{2}$

Then $\|S - T\|_\infty = \|B^T.\frac{(B^T)^{-1}.S}{(B^T)^{-1}.S}\|_\infty \leq \frac{1}{2} \|B^T\|_\infty = \frac{1}{2} \|B\|_1$. \qed
Existence and bounds of PMNS

Irreducible polynomials and PMNS

Let \(E(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \), and let \(C \) be the companion matrix of \(E(X) \):

\[
C = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1}
\end{pmatrix}.
\]

Let \(V = (v_0, \ldots, v_{n-1}) \) the vector representing the coefficient of the polynomial \(V(X) = \sum_{i=0}^{n-1} v_i X^i \), then \(V.C \) is the vector whose coordinates are the coefficients of the polynomial \(X.V(X) \mod E(X) \).
Existence and bounds of PMNS
Irreducible polynomials and PMNS

Proposition

Let V a non-null vector of \mathcal{L}, the lattice of rank n defined by A. Let B the $n \times n$ matrix whose i^{th} row is the vector B_i such that $B_i = V \cdot C^i$ (with polynomial $B_i(X) = X^i \cdot V(X) \mod E(X)$).

If $V(X)$ is inversible modulo $E(X)$ then:

- the matrix B defines a sublattice $\mathcal{L}' \subseteq \mathcal{L}$ of rank n (i.e. $B = (B_0, \ldots, B_{n-1})$ is a base of \mathcal{L}'),
- and $V \in \mathcal{L}'$.

Proof.

The B_i are linearly independent. Indeed, let us suppose that there exists a non null vector $(t_0, t_1, \ldots, t_{n-1}) \in \mathbb{Z}^n$ such that $\sum_{i=0}^{n-1} t_i B_i = 0$. It means that $\sum_{i=0}^{n-1} t_i X^i V(X) = 0 \mod E(X)$, or equivalently $T(X)V(X) = 0 \mod E(X)$, with $T(X) = \sum_{i=0}^{n-1} t_i X^i$. Then $T(X)V(X)V^{-1}(X) \mod E(X) = T(X) = 0$, since $V(X)$ is inversible modulo $E(X)$ and degree of $T(X)$ is at most $n-1$. Hence the rows of B are a base of a sublattice $\mathcal{L}' \subseteq \mathcal{L}$ of rank n, and $V \in \mathcal{L}'$.
Existence and bounds of PMNS
Irreducible polynomials and PMNS

Corollary
Let V a non-null vector of \mathcal{L}, the lattice of rank n defined by A. If $E(X)$ is irreducible, then

- V can define a sublattice $\mathcal{L}' \subseteq \mathcal{L}$ of rank n,
- and $V \in \mathcal{L}'$.

Proof.
If $E(X)$ is irreducible, then $V(X)$ is invertible and Proposition 5 gives $\mathcal{B} = (B_0, \ldots, B_{n-1})$ a base of \mathcal{L}', $\mathcal{L}' \subseteq \mathcal{L}$ of rank n, and $V \in \mathcal{L}'$. □
Corollary

Let \mathcal{L}, the lattice of rank n given by A, and let the lattice \mathcal{L}_D of rank n in \mathbb{Z}^{n^2} defined by $D = (A|A.C^1| \cdots |A.C^{n-1})$, then for any $V = (V_0, V_1, \ldots, V_{n-1}) \in \mathcal{L}_D$ such that $V \neq (0)^{n^2}$:

If $E(X)$ is irreducible then:

1. $V_0 \in \mathcal{L}$,
2. $(V_0, V_1, \ldots, V_{n-1})$ is a base of $\mathcal{L}' \subseteq \mathcal{L}$.

Proof.

V_0 is a linear combination of rows of A, hence it belongs to \mathcal{L}. Next, since $V_i = V_0.C^i$, for all $i \geq 1$, then, due to Corollary 6, the vector $(V_0, V_1, \ldots, V_{n-1})$ is a base of a sublattice $\mathcal{L}' \subseteq \mathcal{L}$.

Hence, a strategy is to choose a vector $(V_0, V_1, \ldots, V_{n-1})$ of \mathcal{L}_D and to build the base B of \mathcal{L} from V_i with $\|B\|_1$ as small as possible.
Existence and bounds of PMNS

Remarks

- For any \(p \) and \(n \) there exist \(E(X) \) monic of degree \(n \), with \(\gamma \) as root, and \(\rho \) such that \(\mathcal{B} = (p, n, \gamma, \rho)_E \) is a PMNS.
 (for example \(E(X) = X^n - (\gamma^n \mod p) \))
- Then, a \(\mathcal{L} \) the lattice of rank \(n \) can be defined by \(\mathbf{A} \) depending of \(p, n \) and \(\gamma \).
- If \(E(X) \) is irreducible and \(V \in \mathcal{L} \) then we can construct easily a "reduced" base \(B \) of \(\mathcal{L} \).
- Thus, one goal is to find a base \(B \) of \(\mathcal{L} \) with \(\| \mathbf{B} \|_1 \) as small as possible, to give interesting bounds of \(\rho \).
Existence and bounds of PMNS

Example with $p \sim 2^{256}$ and $\rho < 2^{33}$

\[p = 112848483075082590657416923680536930196574208889254960005437791530871071177777 \]
\[n = 8, \quad E(X) = X^8 + X^2 + X + 1, \]
\[\gamma = 14916364465236885841418726559687117741451144740538386254842986662265545588774 \]

LLL: $\|B\|_1 = 16940155314$ BKZ: $\|B\|_1 = 15289909984$
Cor. 6: $\|B\|_1 = 13881325101$ Cor. 7, : $\|B\|_1 = 12883199915$

\[p = 96777329138546418411606037850670691916278980249035796845487391462163262877831 \]
\[n = 8, \quad E(X) = X^8 + 6, \]
\[\gamma = 5538274654329514802181726618906590237936295237553666062542808070676484572674 \]

LLL: $\|B\|_1 = 12509178620$ BKZ: $\|B\|_1 = 12509178620$
Cor. 6: $\|B\|_1 = 47611052126$ Cor. 7: $\|B\|_1 = 40733847267$
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Suitable irreducible polynomials for PMNS

Definition
A monic polynomial $E(X)$ is a suitable PMNS reduction polynomial, if:

1. $E(X)$ is irreducible in $\mathbb{Z}[X]$,
2. $E(X) = X^n + a_k X^k + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$, with $n \geq 2$ and $k \leq \frac{n}{2}$,
3. most of coefficients a_i are zero, and others are very small (if possible equal to ± 1) compare to $p^{1/n}$.
Suitable irreducible polynomials for PMNS

Classical criteria of irreducibility

Proposition (from Dumas’ criterion 1906)

We assume that if there exists a prime μ and an integer α, such that, $\mu^\alpha | a_0$, $\mu^{\alpha+1} \nmid a_0$ and, $\mu^{\lceil\alpha(n-i)/n\rceil} | a_i$, and $\gcd(\alpha, n) = 1$, then $E(X) = X^n + a_kX^k + \cdots + a_1X + a_0$ is irreducible over $\mathbb{Z}[X]$.

For example, $E(X) = X^n + \mu X^k + \mu$ is irreducible with this criterion. If $k < n/2$ and $\mu \ll p^{1/n}$, then $E(X)$ is a suitable PMNS reduction polynomial.
Suitable irreducible polynomials for PMNS
Classical criteria of irreducibility

Proposition (from N. C. Bonciocat 2015)

Let $E(X) = X^n + a_k X^k + \cdots + a_1 X + a_0$, $a_0 \neq 0$, let $t \geq 2$ and let

μ_1, \ldots, μ_t be pair-wise distinct prime numbers, and $\alpha_1, \ldots, \alpha_t$

positive integers. If, for $j = 1, \ldots, t$, and $i = 0, \ldots, k$, $\mu_j^{\alpha_j} \mid a_i$ and

$\mu_j^{\alpha_{j+1}} \nmid a_0$, and $\gcd(\alpha_1, \ldots, \alpha_t, n) = 1$ then $E(X)$ is irreducible

over $\mathbb{Z}[X]$.

For example, $E(X) = X^n + \mu_1^{\alpha_1} \mu_2^{\alpha_2} X^k + \mu_1^{\alpha_1} \mu_2^{\alpha_2}$ with

$\gcd(\alpha_1, \alpha_2, n) = 1$, is irreducible with this criterion. If $k < n/2$ and

$\mu_1^{\alpha_1} \mu_2^{\alpha_2} \ll p^{1/n}$, then $E(X)$ is a suitable PMNS reduction
polynomial.
Suitable irreducible polynomials for PMNS

Cyclotomic Polynomials

ClassCyclo(n) the class of suitable cyclotomic polynomials for PMNS, whose degree is n.

Proposition

ClassCyclo(n) $\neq \emptyset$ if and only if, $n = 2^i3^j$ with $i \geq 1, j \geq 0$.

Hence, suitable cyclotomic polynomials are:

- $\Phi_{2^i}(X) = X^{2^{i-1}} + 1$, thus $n = 2^{i-1}$ with $i \geq 2$,
- $\Phi_{3^j}(X) = X^{2 \cdot 3^{j-1}} + X^{3^{j-1}} + 1$, thus $n = 2 \cdot 3^{j-1}$ with $j \in \mathbb{N}^*$,
- $\Phi_{2^i \cdot 3^j}(X) = X^{2^i \cdot 3^{j-1}} - X^{2^{i-1} \cdot 3^{j-1}} + 1$, thus $n = 2^i \cdot 3^{j-1}$ for $i, j \in \mathbb{N}^*$.
Suitable irreducible polynomials for PMNS
{$\{-1, 1\}$-quadrinomials}

Proposition (Finch and Jones 2006)

The quadrinomial $X^a + \beta X^b + \gamma X^c + \delta$ is irreducible over $\mathbb{Z}[X]$, (with
$\beta, \gamma, \delta \in \{-1, 1\}$ and $a > b > c > 0$ with $\gcd(a, b, c) = 2^t m$, with m odd and they note $a' = a/2^t$, $b' = b/2^t$ and $c' = c/2^t$. They define $\bar{a} = \gcd(a', b' - c')$, $\bar{b} = \gcd(b', a' - c')$ and $\bar{c} = \gcd(c', a' - b')$)

if and only if, its satisfies one of the following conditions:

1. $(\beta, \gamma, \delta) = (1, 1, 1)$ and $\bar{a}b\bar{c} \equiv 1 \pmod{2}$
2. $(\beta, \gamma, \delta) = (-1, 1, 1)$, $b' - c' \not\equiv 0 \pmod{2\bar{a}}$, $b' \not\equiv 0 \pmod{2\bar{b}}$ and $a' - b' \not\equiv 0 \pmod{2\bar{c}}$
3. $(\beta, \gamma, \delta) = (1, -1, 1)$, $b' - c' \not\equiv 0 \pmod{2\bar{a}}$, $a' - c' \not\equiv 0 \pmod{2\bar{b}}$ and $c' \not\equiv 0 \pmod{2\bar{c}}$
4. $(\beta, \gamma, \delta) = (1, 1, -1)$, $a' \not\equiv 0 \pmod{2\bar{a}}$, $b' \not\equiv 0 \pmod{2\bar{b}}$ and $c' \not\equiv 0 \pmod{2\bar{c}}$
5. $(\beta, \gamma, \delta) = (-1, -1, -1)$, $a' \not\equiv 0 \pmod{2\bar{a}}$, $a' - c' \not\equiv 0 \pmod{2\bar{b}}$ and $a' - b' \not\equiv 0 \pmod{2\bar{c}}$

For example, $E(X) = X^{2^7 7m} + X^{2^5 5m} + X^{2^3 3m} + 1$ is a suitable PMNS reduction quadrinomial.

We note \(\gcd(n, m) = d\) and \(n = d.n_1, \ m = d.m_1\). If \(n_1 + m_1 \not\equiv 0 \mod 3\) then the polynomial \(X^n + \beta X^m + \delta\) with \(\delta, \beta \in \{-1, 1\}\) and \(n > 2m > 0\), is irreducible over \(\mathbb{Z}[X]\).

Proposition (N. C. Bonciocat 2015)

We note, \(c = \prod_{j=1}^{k} p_j^{m_j}\) with \(p_j\) pair-wise distinct prime numbers, and \(m_j\) positive integers.

If \(\gcd(m_1, \ldots, m_k, n) = 1\) then the polynomial \(X^n + c\) with \(c \in \mathbb{Z}, |c| \geq 2\), is irreducible over \(\mathbb{Z}[X]\).
Suitable irreducible polynomials for PMNS
From Perron irreducibility (N. C. Bonciocat 2010)

Proposition

For a fixed $n \geq 2$, a prime μ, and $P(X) = X^n + \sum_{i=1}^{n/2} \varepsilon_i X^i \pm \mu$ with

$\varepsilon_i \in \{-1, 0, 1\}$, if $\mu > 1 + \sum_{i=1}^{n/2} |\varepsilon_i|$ then the polynomial $P(X)$ is irreducible over $\mathbb{Z}[X]$.

Proposition

For a fixed $n \geq 2$, and $P(X) = X^n + \sum_{i=2}^{n/2} \varepsilon_i X^i + a_1 X \pm 1$ with

$\varepsilon_i \in \{-1, 0, 1\}$ and $a_1 \in \mathbb{Z}^*$. If $|a_1| > 2 + \sum_{i=2}^{n/2} |\varepsilon_i|$ then the polynomial $P(X)$ is irreducible over $\mathbb{Z}[X]$.
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Number of PMNS for a given \(p \)

General case

Proposition

Let \(p \) prime, \(n > 2 \), \(E(X) \) a polynomial of degree \(n \) and irreducible in \(\mathbb{Z}[X] \), and \(D(X) = \gcd(X^p - X, E(X)) \mod p \), there exists \(\deg(D(X)) \) Polynomial Modular Number Systems \((p, n, \gamma_i, \rho)_E(X)\).

Computation of \(\gcd(X^p - X, E(X)) \mod p \), in two steps:

1. evaluation of \(X^p \mod E(X) \mod p \) (square/multiply exponentiation), then of \(F(X) = X^p - 1 \mod E(X) \mod p \),

2. evaluation of \(\gcd(F(X), E(X)) \mod p \) with \(\deg F(X) < n \).

The roots are found by factorising the polynomial \(\gcd(F(X), E(X)) \mod p \).
We consider $p = 7826474692469460039387400099999297$ and $E(X) = X^5 + X^2 + 1$. Then, $X^p \mod E(X) = 7322126259420098177093985099094624 \ X^4$

$+ 1727826215301243349042222461135262 \ X^3$

$+ 3438841897608126971004523506864410 \ X^2$

$+ 7372958503626664659096728485020295 \ X$

$+ 4167285606168530025180293516680876$

Thus, $\gcd(X^p \mod E(X) - X, E(X)) \mod p$

$= X^2 + 1305849998419067291000337897705258 \ X$

$+ 1793073000954204546034194068098826$

$= (X + 6157699039557809270671068895079212)$

$(X + 2974625651330718059716669102633643)$

Hence, we obtain two roots of $E(X) \mod p$

$\gamma_1 = 1668775652911650768716331204928385$

$\gamma_2 = 4851849041138741979670730997365654$
Number of PMNS for a given p

Cyclotomic case

Proposition

Let $p > 2$ a prime number, and an integer $m \geq 3$. If $m \mid (p - 1)$, then the cyclotomic polynomial $\Phi_m(X)$ has $\varphi(m)$ roots over $\mathbb{Z}/p\mathbb{Z}$.

\[
(\Phi_m(X) \mid (X^{p-1} - 1) = \prod_{\xi_i \in (\mathbb{Z}/p\mathbb{Z})^*} (X - \xi_i))
\]

Corollary

Let p prime, $n \geq 2$ such that $n = 2^i 3^j$, with $i, j \in \mathbb{N}$.

- If $i > 0$, $j = 0$, and $(2 \ n)$ divides $(p - 1)$, and $E(X) = \Phi_{2n}(X) = X^n + 1$,
- If $i = 1$, $j \geq 0$, and $(3 \ n / 2)$ divides $(p - 1)$, and $E(X) = \Phi_{\frac{3n}{2}}(X) = X^n + X^{\frac{n}{2}} + 1$,
- If $i \geq 1$, $j \geq 0$, and $(3 \ n)$ divides $(p - 1)$, and $E(X) = \Phi_{3n}(X) = X^n - X^{\frac{n}{2}} + 1$,

then, there exist n PMNS $(p, n, \gamma_i, \rho)_{E(X)}$, with γ_i one of the n distinct roots modulo p of $E(X)$.
Number of PMNS for a given p

Example of Cyclotomic cases

Construction PMNS from a cyclotomic reduction polynomial for $p = 2^{256} \cdot 3^{157} \cdot 115 + 1$ coded on 512 bits.

- $E(X) = X^8 + 1$, from the 8 roots, the best ρ is obtained with our approach (with Corollary-6 and Corollary-7) and is 66 bits long.

- $E(X) = X^6 + X^3 + 1$, from the six roots, the best ρ is obtained two times with LLL, else with Corollary-6 and Corollary-7, and is 87 bits long.

- $E(X) = X^6 - X^3 + 1$, from the six roots, the best ρ is obtained with Corollary 6 and Corollary 7, and is 87 bits long.
Number of PMNS for a given p

Example of a General case

$p = 57896044618658097711785492504343953926634992332820282019728792003956566811073$

a 256-bits prime, and $n = 9$.

We consider PMNS $\mathcal{B} = (p, n, \gamma, \rho)_E$ such that:

- $E(X) = X^n + a_k X^k + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$, with $n \geq 2$ and $k \leq \frac{n}{2}$,
- coefficients $|a_i| \leq 1$ for $1 \leq i \leq k$ and $|a_0| \leq 3$
- $\rho \leq 2^{31}$

The number of PMNS $\mathcal{B} = (p, n, \gamma, \rho)_E$ is equal to 354.

Most of the time, the best ρ is obtained first by LLL (266 times) or BKZ (46), some are due to Corollary-6 (10) or with Corollary-7 (28), or Proposition-5 (4) with a short vector.
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
PMNS Coefficient Reduction
Montgomery approach

\(\mathcal{B} = (p, n, \gamma, \rho)_E \) a PMNS, and \(\alpha_E \) such that, with \(\deg(A(X)) < 2n \),
\[\|A(X) \mod E(X)\|_\infty < \alpha_E \|A(X)\|_\infty. \]
Let \(V \) a non-null vector of \(\mathfrak{L} \).

If \(\|V\|_\infty < \frac{1}{2n\alpha_E} \rho \) and there exists \(V'(X) = (-V^{-1}(X) \mod E(X)) \mod 2^l \),
then, for \(A(X) \) with coefficients smaller than \(2^{l-1} \rho \):

1. \(Q(X) \leftarrow ((A(X)V'(X)) \mod E(X)) \mod 2^l \)
2. \(T(X) \leftarrow Q(X)V(X) \mod E(X) \) (thus \(T \in \mathfrak{L} \) and \(\|T\|_\infty < 2^{l-1} \rho \))
3. \(R(X) = A(X) + T(X) \) (thus \(R(X) \) multiple of \(2^l \))
4. \(S(X) = R(X)/2^l \) (thus \(\|S\|_\infty < \rho \))

with \(S(\gamma) \equiv A(\gamma)2^{-l} \pmod{p} \)

If \(n\rho < 2^l \) there exists \(G(X) \) such that \(G(\gamma) \equiv 2^{2l} \pmod{p} \) and \(\|G\|_\infty < \rho \),
then \(G(\gamma)S(\gamma) \equiv 2^l A(\gamma) \pmod{p} \) and \(F(X) = G(X)S(X) \mod E(X) \) is such
that \(\|F\|_\infty < 2^{l-1} \rho. \)
PMNS Coefficient Reduction

With $2^k = F(\gamma) \mod p$

Find a $B = (p, n, \gamma, \rho)_E$ such that $2^k = F(\gamma) \mod p$ with $\|F\|_\infty < 2^{\epsilon_F}$ and $(\text{#}(\text{non-null coeff of } F)) < 2^\beta$

We note ϵ_E, the integer such that $\|C(X) \mod E(x)\|_\infty < 2^{\epsilon_E} \|C(X)\|_\infty$

We consider $A(X)$ with $\|A(X)\|_\infty < 2^{k+t}$

do

1. We split $A(X) \rightarrow A_1(X)2^k + A_0(X)$

 with $\|A_1(X)\|_\infty < 2^t$ and $\|A_0(X)\|_\infty < 2^k$

2. $A(X) \leftarrow (A_1(X)F(X) \mod E(X)) + A_0(X)$

 with $\|A(X)\|_\infty < 2^{t+\beta+\epsilon_F+\epsilon_E}$

until $\|A(X)\|_\infty < 2^k$

If $(\beta + \epsilon_F + \epsilon_E) < k$ then the algorithm converges.
PMNS Coefficient Reduction

Example of a specific case approach (Plantard’s PhD)

Find a $\mathcal{B} = (p, n, \gamma, \rho)_E$ such that $2^k = F(\gamma) \mod p$ with $\|F\|_{\infty} < \epsilon$

- The construction of the system giving some features: $n = 8$, and $\rho = 2^{32}$ with $p < \rho^n$ determine the size of the problem.
- The property $\gamma^8 \equiv 2 \mod p$ for the polynomial reduction.
- The coefficient reduction is given by $2^{32} \equiv \gamma^5 + 1 \mod p$

Thus $V = 2^{32}V_1 + V_0 = 2^{32}Id.V_1 + V_0 \equiv M.V_1 + V_0 \mod p$ with

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \equiv \begin{pmatrix} 2^{32} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2^{32} \end{pmatrix} \mod p$$
PMNS Coefficient Reduction
Specific case approach

Remarks and construction

- $2^{32}I - M = 0 \mod p$ defines a lattice.
- p divides $\det (2^{32}I - M)$, a factorization gives:
 \[p = 11579208902163662262124715160334756877804245386980633020041035952359812890593 \]
 which corresponds to the expected size.

- The value of γ is deduced as a solution of
 $\gcd(X^8 - 2, 2^{32} - X^5 - 1) \mod p$:
 \[\gamma = 14474011127704577782765589395224532314179217058921488395049827733759590399996 \]

- Generally, M is found with coefficients lower than
 $2^{k/2}(\sim \sqrt{\rho})$, which means that three rounds are sufficient.
On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
Conclusions

▶ We observe that irreducible polynomials give better PMNS than non-irreducible ones.
▶ Coefficient reduction is equivalent to the research of a close vector.
▶ Is it possible to find an efficient algorithm for these specific lattices??
▶ Is a round-off Babai sufficient ?? Could we adapt the nearest plan approach?
▶ Find an ad hoc method like when a power of two has a ”good” PMNS representation??
▶ How construct easily reduced bases for the norm-1 without the help of LLL family algorithms ??